Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(6): 392, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391438

RESUMO

Overexpression of Bcl-2 proteins such as Bcl2L10, also referred to as Nrh, is associated with resistance to therapy and poor survival in various cancers, including breast cancer, lung cancer, and leukemia. The single nucleotide polymorphism (SNP) of BCL2L10 in its BH4 domain at position 11 (BCL2L10 Leu11Arg, rs2231292), corresponding to position 11 in the Nrh open reading frame, is reported to lower resistance towards chemotherapy, with patients showing better survival in the context of acute leukemia and colorectal cancer. Using cellular models and clinical data, we aimed to extend this knowledge to breast cancer. We report that the homozygous status of the Nrh Leu11Arg isoform (Nrh-R) is found in 9.7-11% percent of the clinical datasets studied. Furthermore, Nrh-R confers higher sensitivity towards Thapsigargin-induced cell death compared to the Nrh-L isoform, due to altered interactions with IP3R1 Ca2+ channels in the former case. Collectively, our data show that cells expressing the Nrh-R isoform are more prone to death triggered by Ca2+ stress inducers, compared to Nrh-L expressing cells. Analysis of breast cancer cohorts revealed that patients genotyped as Nrh-R/Nrh-R may have a better outcome. Overall, this study supports the notion that the rs2231292 Nrh SNP could be used as a predictive tool regarding chemoresistance, improving therapeutic decision-making processes. Moreover, it sheds new light on the contribution of the BH4 domain to the anti-apoptotic function of Nrh and identifies the IP3R1/Nrh complex as a potential therapeutic target in the context of breast cancer.


Assuntos
Neoplasias da Mama , Leucemia , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Terapia Neoadjuvante , Polimorfismo de Nucleotídeo Único/genética , Retículo Endoplasmático , Biomarcadores
2.
Sci Adv ; 8(16): eabm7375, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442739

RESUMO

Cytoplasmic and membrane-bound BCL-2 family proteins regulate apoptosis, a form of programmed cell death, via dozens of binary protein interactions confounding measurement of the effects of inhibitors in live cells. In cancer, apoptosis is frequently dysregulated, and cell survival depends on antiapoptotic proteins binding to and inhibiting proapoptotic BH3 proteins. The clinical success of BH3 mimetic inhibitors of antiapoptotic proteins has spawned major efforts by the pharmaceutical industry to develop molecules with different specificities and higher affinities. Here, quantitative fast fluorescence lifetime imaging microscopy enabled comparison of BH3 mimetic drugs in trials and preclinical development by measuring drug effects on binding affinities of interacting protein pairs in live cells. Both selectivity and efficacy were assessed for 15 inhibitors of four antiapoptotic proteins for each of six BH3 protein ligands. While many drugs target the designed interaction, most also have unexpected selectivity and poor efficacy in cells.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
J Control Release ; 345: 646-660, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339579

RESUMO

Complex in vitro models of human immune cells and intestinal mucosa may have a translation-assisting role in the assessment of anti-inflammatory compounds. Chronic inflammation of the gastrointestinal tract is a hallmark of inflammatory bowel diseases (IBD). In both IBD entities, Crohn's disease and ulcerative colitis, impaired immune cell activation and dysfunctional epithelial barrier are the common pathophysiology. Current therapeutic approaches are targeting single immune modulator molecules to stop disease progression and reduce adverse effects. Such molecular targets can be difficult to assess in experimental animal models of colitis, due to the disease complexity and species differences. Previously, a co-culture model based on human epithelial cells and monocytes arranged in a physiological microenvironment was used to mimic inflamed mucosa for toxicological and permeability studies. The leaky gut model described here, a co-culture of Caco-2, THP-1 and MUTZ-3 cells, was used to mimic IBD-related pathophysiology and for combined investigations of permeability and target engagement of two Janus kinase (JAK) inhibitors, tofacitinib (TOFA) and a JAK1-targeting siRNA nanomedicine. The co-culture just before reaching confluency of the epithelium was used to mimic the compromised intestinal barrier. Delivery efficacy and target engagement against JAK1 was quantified via downstream analysis of STAT1 protein phosphorylation after IFN-γ stimulation. Compared to a tight barrier, the leaky gut model showed 92 ± 5% confluence, a barrier function below 200 Ω*cm2, and enhanced immune response to bacteria-derived lipopolysaccharides. By confocal microscopy we observed an increased accumulation of siJAK1-nanoparticles within the sub-confluent regions leading to uptake into immune cells near the epithelium. A concentration-dependent downregulation of JAK/STAT pathway was observed for siJAK1-nanoparticles (10 ± 12% to 16 ± 12%), whereas TOFA inhibition was 86 ± 2%, compared to untreated cells. By mimicking the status of severely damaged epithelium, like in IBD, the leaky gut model holds promise as a human in vitro system to evaluate the efficacy of anti-inflammatory drugs and nanomedicines.


Assuntos
Doenças Inflamatórias Intestinais , Inibidores de Janus Quinases , Animais , Células CACO-2 , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Janus Quinase 1/metabolismo , Inibidores de Janus Quinases/metabolismo , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Nanomedicina , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
4.
J Crohns Colitis ; 16(2): 286-300, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34286840

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel diseases are highly debilitating conditions that require constant monitoring and life-long medication. Current treatments are focused on systemic administration of immunomodulatory drugs, but they have a broad range of undesirable side-effects. RNA interference is a highly specific endogenous mechanism that regulates the expression of the gene at the transcript level, which can be repurposed using exogenous short interfering RNA [siRNA] to repress expression of the target gene. While siRNA therapeutics can offer an alternative to existing therapies, with a high specificity critical for chronically administrated drugs, evidence of their potency compared to chemical kinase inhibitors used in clinics is still lacking in alleviating an adverse inflammatory response. METHODS: We provide a framework to select highly specific siRNA, with a focus on two kinases strongly involved in pro-inflammatory diseases, namely JAK1 and JAK3. Using western-blot, real-time quantitative PCR and large-scale analysis, we assessed the specificity profile of these siRNA drugs and compared their efficacy to the most recent and promising kinase inhibitors for Janus kinases [Jakinibs], tofacitinib and filgotinib. RESULTS: siRNA drugs can reach higher efficiency and selectivity at lower doses [5 pM vs 1 µM] than Jakinibs. Moreover, JAK silencing lasted up to 11 days, even with 6 h pulse transfection. CONCLUSIONS: The siRNA-based drugs developed hold the potential to develop more potent therapeutics for chronic inflammatory diseases.


Assuntos
Doenças Inflamatórias Intestinais , Janus Quinases , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Janus Quinases/genética , Janus Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
5.
Front Immunol ; 12: 722411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497612

RESUMO

Nonviral systems, such as lipid nanoparticles, have emerged as reliable methods to enable nucleic acid intracellular delivery. The use of cationic lipids in various formulations of lipid nanoparticles enables the formation of complexes with nucleic acid cargo and facilitates their uptake by target cells. However, due to their small size and highly charged nature, these nanocarrier systems can interact in vivo with antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages. As this might prove to be a safety concern for developing therapies based on lipid nanocarriers, we sought to understand how they could affect the physiology of APCs. In the present study, we investigate the cellular and metabolic response of primary macrophages or DCs exposed to the neutral or cationic variant of the same lipid nanoparticle formulation. We demonstrate that macrophages are the cells affected most significantly and that the cationic nanocarrier has a substantial impact on their physiology, depending on the positive surface charge. Our study provides a first model explaining the impact of charged lipid materials on immune cells and demonstrates that the primary adverse effects observed can be prevented by fine-tuning the load of nucleic acid cargo. Finally, we bring rationale to calibrate the nucleic acid load of cationic lipid nanocarriers depending on whether immunostimulation is desirable with the intended therapeutic application, for instance, gene delivery or messenger RNA vaccines.


Assuntos
Cátions/química , Técnicas de Transferência de Genes , Lipídeos/química , Lipossomos/química , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular , Sobrevivência Celular , Fenômenos Químicos , Citocinas/química , Portadores de Fármacos , Lipopolissacarídeos/química , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio
6.
Oncogene ; 39(15): 3056-3074, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066881

RESUMO

The Bcl-xL apoptosis inhibitor plays a major role in vertebrate development. In addition to its effect on apoptosis, Bcl-xL is also involved in cell migration and mitochondrial metabolism. These effects may favour the onset and dissemination of metastasis. However, the underlying molecular mechanisms remain to be fully understood. Here we focus on the control of cell migration by Bcl-xL in the context of breast cancer cells. We show that Bcl-xL silencing led to migration defects in Hs578T and MDA-MB231 cells. These defects were rescued by re-expressing mitochondria-addressed, but not endoplasmic reticulum-addressed, Bcl-xL. The use of BH3 mimetics, such as ABT-737 and WEHI-539 confirmed that the effect of Bcl-xL on migration did not depend on interactions with BH3-containing death accelerators such as Bax or BH3-only proteins. In contrast, the use of a BH4 peptide that disrupts the Bcl-xL/VDAC1 complex supports that Bcl-xL by acting on VDAC1 permeability contributes to cell migration through the promotion of reactive oxygen species production by the electron transport chain. Collectively our data highlight the key role of Bcl-xL at the interface between cell metabolism, cell death, and cell migration, thus exposing the VDAC1/Bcl-xL interaction as a promising target for anti-tumour therapy in the context of metastatic breast cancer.


Assuntos
Neoplasias da Mama/patologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína bcl-X/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Metástase Linfática/patologia , Mitocôndrias/efeitos dos fármacos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Nitrofenóis/farmacologia , Nitrofenóis/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Canal de Ânion 1 Dependente de Voltagem/antagonistas & inibidores , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genética
8.
Assay Drug Dev Technol ; 16(6): 350-360, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30088945

RESUMO

In response to a variety of insults the unfolded protein response (UPR) is a major cell program quickly engaged to promote either cell survival or if stress levels cannot be relieved, apoptosis. UPR relies on three major pathways, named from the endoplasmic reticulum (ER) resident proteins IRE1α, PERK, and ATF6 that mediate response. Current tools to measure the activation of these ER stress response pathways in mammalian cells are cumbersome and not compatible with high-throughput imaging. In this study, we present IRE1α and PERK sensors with improved sensitivity, based on the canonical events of xbp1 splicing and ATF4 translation at ORF3. These sensors can be integrated into host cell genomes through lentiviral transduction, opening the way for use in a wide array of immortalized or primary mammalian cells. We demonstrate that high-throughput single-cell analysis offers unprecedented kinetic details compared with endpoint measurement of IRE1α and PERK activity. Finally, we point out the limitations of dye-based nuclear segmentation for live cell imaging applications, as we show that these dyes induce UPR and can strongly affect both the kinetic and dynamic responses of IRE1α and PERK pathways.


Assuntos
Corantes/química , Endorribonucleases/análise , Imagem Óptica , Proteínas Serina-Treonina Quinases/análise , eIF-2 Quinase/análise , Células Cultivadas , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Célula Única , eIF-2 Quinase/metabolismo
9.
Cancer Res ; 78(6): 1404-1417, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29330143

RESUMO

Drug resistance and metastatic relapse remain a top challenge in breast cancer treatment. In this study, we present preclinical evidence for a strategy to eradicate advanced breast cancers by targeting the BCL-2 homolog Nrh/BCL2L10, which we discovered to be overexpressed in >45% of a large cohort of breast invasive carcinomas. Nrh expression in these tumors correlated with reduced metastasis-free survival, and we determined it to be an independent marker of poor prognosis. Nrh protein localized to the endoplasmic reticulum. Mechanistic investigations showed that Nrh made BH4 domain-dependent interactions with the ligand-binding domain of the inositol-1,4,5-triphosphate receptor (IP3R), a type 1/3 Ca2+ channel, allowing Nrh to negatively regulate ER-Ca2+ release and to mediate antiapoptosis. Notably, disrupting Nrh/IP3R complexes by BH4 mimetic peptides was sufficient to inhibit the growth of breast cancer cells in vitro and in vivo Taken together, our results highlighted Nrh as a novel prognostic marker and a candidate therapeutic target for late stage breast cancers that may be addicted to Nrh.Significance: These findings offer a comprehensive molecular model for the activity of Nrh/BCL2L10, a little studied antiapoptotic molecule, prognostic marker, and candidate drug target in breast cancer. Cancer Res; 78(6); 1404-17. ©2018 AACR.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/fisiologia , Sítios de Ligação , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos SCID , Terapia de Alvo Molecular/métodos , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Prognóstico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Signal ; 7(312): ra14, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24518293

RESUMO

Members of the Bcl-2 protein family regulate mitochondrial membrane permeability and also localize to the endoplasmic reticulum where they control Ca(2+) homeostasis by interacting with inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs). In zebrafish, Bcl-2-like 10 (Nrz) is required for Ca(2+) signaling during epiboly and gastrulation. We characterized the mechanism by which Nrz controls IP3-mediated Ca(2+) release during this process. We showed that Nrz was phosphorylated during early epiboly, and that in embryos in which Nrz was knocked down, reconstitution with Nrz bearing mutations designed to prevent its phosphorylation disrupted cyclic Ca(2+) transients and the assembly of the actin-myosin ring and led to epiboly arrest. In cultured cells, wild-type Nrz, but not Nrz with phosphomimetic mutations, interacted with the IP3 binding domain of IP3R1, inhibited binding of IP3 to IP3R1, and prevented histamine-induced increases in cytosolic Ca(2+). Collectively, these data suggest that Nrz phosphorylation is necessary for the generation of IP3-mediated Ca(2+) transients and the formation of circumferential actin-myosin cables required for epiboly. Thus, in addition to their role in apoptosis, by tightly regulating Ca(2+) signaling, Bcl-2 family members participate in the cellular events associated with early vertebrate development, including cytoskeletal dynamics and cell movement.


Assuntos
Sinalização do Cálcio/fisiologia , Movimento Celular/fisiologia , Embrião não Mamífero/fisiologia , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Western Blotting , Biologia Computacional , Embrião não Mamífero/citologia , Transferência Ressonante de Energia de Fluorescência , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Células HeLa , Humanos , Imunoprecipitação , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Simulação de Dinâmica Molecular , Morfolinos/genética , Fosforilação , Proteínas Proto-Oncogênicas/genética , Alinhamento de Sequência , Estatísticas não Paramétricas , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...